
Metamodel-based importance sampling for structural reliability

analysis

V. Dubourga,b,∗, B. Sudretc, F. Deheegerb
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Abstract

Structural reliability methods aim at computing the probability of failure of systems with

respect to some prescribed performance functions. In modern engineering such functions

usually resort to running an expensive-to-evaluate computational model (e.g. a finite element

model). In this respect simulation methods which may require 103−6 runs cannot be used

directly. Surrogate models such as quadratic response surfaces, polynomial chaos expansions

or Kriging (which are built from a limited number of runs of the original model) are then

introduced as a substitute of the original model to cope with the computational cost. In

practice it is almost impossible to quantify the error made by this substitution though. In

this paper we propose to use a Kriging surrogate of the performance function as a means to

build a quasi-optimal importance sampling density. The probability of failure is eventually

obtained as the product of an augmented probability computed by substituting the meta-

model for the original performance function and a correction term which ensures that there

is no bias in the estimation even if the meta-model is not fully accurate. The approach

is applied to analytical and finite element reliability problems and proves efficient up to

100 basic random variables.
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1. Introduction

Reliability analysis consists in the assessment of the level of safety of a system. Given

a probabilistic model (an n-dimensional random vector X with probability density function

(PDF) fX) and a performance model (a function g), it makes use of mathematical techniques

in order to estimate the safety level of the system in the form of a failure probability. A

basic reference approach is the Monte Carlo simulation technique that resorts to numerical

simulation of the performance function through the probabilistic model. Failure is usually

defined as the event F = {g (X) ≤ 0}, so that the failure probability is defined as follows:

pf ≡ P ({g (X) ≤ 0}) =

∫
Df={x∈Rn : g(x)≤0}

fX (x) dx (1)

Introducing the failure indicator function 1g≤0 being equal to one if g (x) ≤ 0 and zero oth-

erwise, the failure probability turns out to be the mathematical expectation of this indicator

function with respect to the joint probability density function fX of the random vector X.

This convenient definition allows one to derive the Monte Carlo estimator which reads:

p̂fMC ≡ ÊX [1g≤0 (X)] =
1

N

N∑
k=1

1g≤0
(
x(k)

)
(2)

where
{
x(1), . . . ,x(N)

}
is a set of samples from the random vector X. This estimator is

asymptotically unbiased and convergent, although the convergence rate is low (∝ N−1/2).

This makes the Monte Carlo estimation technique intractable for real world engineering

problems for which the performance function involves the output of an expensive-to-evaluate

black-box function, e.g. a finite element code.

In order to reduce the number of simulation runs, different alternatives to the brute-

force Monte Carlo method have been proposed and might be classified as follows. One first

approach consists in replacing the original performance function g by a surrogate g̃ which is

much faster to evaluate. Various surrogates have been used amongst which are: quadratic

response surfaces (Bucher and Bourgund, 1990; Kim and Na, 1997; Das and Zheng, 2000),

support vector machines (Hurtado, 2004; Deheeger and Lemaire, 2007; Bourinet et al., 2011),
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neural networks (Papadrakakis and Lagaros, 2002) and Kriging (Kaymaz, 2005; Bichon et al.,

2008). Nevertheless, it is often difficult or even impossible to quantify the error made by such

a substitution. The well-known first- and second-order reliability methods (FORM/SORM),

based on Taylor series expansions somewhat differ from these surrogate-based approaches

because of their mathematical background (Breitung, 1984; Ditlevsen and Madsen, 1996).

But in practice they feature the same limitation: the assumptions (mostly the unicity of the

so-called most probable failure point) they are built on may not hold and it is difficult to

validate them.

From another point of view, variance reduction techniques have been proposed in order to

make Monte Carlo simulation more efficient. Importance sampling (Rubinstein and Kroese,

2008) aims at concentrating the Monte Carlo samples in the vicinity of the limit-state sur-

face, e.g. around the most probable failure point (also known as design point) obtained

by a preliminary FORM analysis (Melchers, 1989). Subset simulation (Au and Beck, 2001;

Ching et al., 2005a,b) computes the failure probability as a product of conditional proba-

bilities, each of them being estimated by Markov Chain Monte Carlo simulation. All these

approaches reveal robust, although they are often too much computationally demanding

to be implemented in industrial cases. As a summary the current practice for evaluating

probabilities of failure in case of computationally demanding performance functions relies

on the substitution of the limit-state function by a metamodel for which no general error

estimation is usually available.

In this paper, a new hybrid approach combining importance sampling and an adaptive

metamodeling technique is proposed. First, a Kriging surrogate of the limit-state function

is built and adaptively refined. Then, the probabilistic prediction provided by the Kriging

surrogate is used to build up a quasi-optimal importance sampling density. As a result

the probability of failure is computed as the product of two terms, namely one obtained

by sampling the surrogate limit-state function, and the other one being a correction factor

computed from the original limit-state function.

The paper is organized as follows. Section 2 recalls the basic of Kriging and introduces the

probabilistic classification function. Section 3 presents the construction of a quasi-optimal
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importance sampling density derived from this function and the associated estimator of the

failure probability. Section 4 introduces an adaptive refinement technique of this importance

sampling density function so as to make the algorithm as parsimonious as possible and

discusses the implementation details. Section 5 eventually provides different application

examples includent a finite element reliability analysis problem.

2. Probabilistic classification using Kriging

Metamodels may be defined as a (statistics-based) model of (physics-based) computa-

tional model. Indeed a metamodel (or response surface) is built from a design of experi-

ments (DOE), i.e. a set of computer experiments denoted by X = {x1, . . . ,xm}, where

{xi, i = 1, . . . ,m} belong to the support Dx of X. In this paper we make use of Kriging

(Sacks et al., 1989; Welch et al., 1992; Santner et al., 2003) which is also known as Gaussian

process modeling. The unique feature of Kriging is that it provides a built-in error estimate,

namely the Kriging variance. This allows the development of adaptive algorithms in which

the DOE is enriched iteratively based on in-fill criteria derived from the Kriging variance.

2.1. Gaussian-process based prediction

Kriging assumes that the performance function g is a sample path of an underlying

Gaussian process (GP) denoted by G that may be cast as follows:

G (x) = f (x)T β + Z (x) (3)

where f (x)T β denotes the mean of the GP which corresponds to a classical linear regression

model on a given functional basis {fi, i = 1, . . . , p} ∈ L2 (Dx, R) and Z (x) denotes a zero-

mean stationary GP with a constant variance σ2
G. It is fully defined by its autocovariance

function which reads:

CGG (x, x′) = σ2
GR (x− x′, `) (4)

where ` is a vector of parameters defining R. The most widely used class of autocorrelation

functions is the anisotropic squared exponential model:

R (x− x′, `) = exp

(
−

n∑
k=1

(
xk − x′k
`k

)2
)

(5)
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The best linear unbiased estimation (BLUE) (Santner et al., 2003) of G at point x is

shown to be a Gaussian random variate Ĝ(x) ∼ N
(
µĜ (x) , σĜ (x)

)
where:

µĜ (x) = f (x)T β̂ + r (x)T R−1
(
y − F β̂

)
σ2
Ĝ

(x) = σ2
G

(
1− r(x)T R−1 r(x) + u(x)T (FT R−1 F)−1 u(x)

) (6)

Here y = 〈g(x1), . . . , g(xm)〉T is the vector of observations computed from the DOE X ; R is

their correlation matrix defined by Rij = R (xi − xj, `) , i, j = 1, . . . ,m; r(x) is the vector

of cross-correlations between the observations and the prediction (ri(x) = R (x− xi, `) , i =

1, . . . ,m); F is the so-called regression matrix defined by Fij = fj (xi) , i = 1, . . . ,m, j =

1, . . . , p. Finally, the generalized least-squares solution β̂ and the vector u(x) respectively

read:

β̂ = (FT R−1 F)−1 FT R−1 y u(x) = FT R−1 r(x)− f(x) (7)

At this stage one can easily prove that µĜ (xi) = g (xi) and σĜ (xi) = 0 for i = 1, . . . ,m,

thus meaning that the Kriging surrogate interpolates the observations. Given a choice for

the regression and correlation models, the optimal set of parameters β∗, `∗ and σ2 ∗
G can

then be inferred using the maximum likelihood principle applied to the single observation

of the GP sample path grouped into the vector y. This inference problem turns into an

optimization problem that can be solved analytically for both β∗ and σ2 ∗
G assuming `∗ is

known. Thus the problem is solved in two steps: the maximum likelihood estimation of `∗

is first solved by a global optimization algorithm which in turns allows one to evaluate the

optimal β∗ and σ2 ∗
G . Implementation details can be found in Welch et al. (1992); Lophaven

et al. (2002).

2.2. Probabilistic classification function

Kriging provides both a surrogate of the limit-state function g(x) which is denoted by

µĜ(x) and an epistemic prediction uncertainty which is characterized by the Kriging variance

σ2
Ĝ

(x). A common practice in the field of Kriging-based reliability analysis consists in using

the mean prediction as a surrogate (i.e. g̃(x) ≡ µĜ(x)) for computing the failure probability

by means of any Monte Carlo sampling technique. Indeed, despite the Kriging variance is
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often used for improving the accuracy of the metamodel in the vicinity of the limit-state

surface (see e.g. Bichon et al., 2008; Echard et al., 2011), the proper estimation of the

failure probability is performed on the mean prediction only. In this paper it is proposed

to use the complete probabilistic prediction, see Picheny (2009) for a similar idea. Let us

introduce for this purpose the following probabilistic classification function:

π(x) ≡ P
[
Ĝ(x) ≤ 0

]
(8)

In this expression, the probability measure P [•] refers to the Gaussian nature of the Kriging

predictor Ĝ(x) ∼ N (µĜ(x), σĜ(x)) and shall not be confused with the probability measure

P (•) associated with the random vector X in Eq. (1). Thanks to the Gaussian nature of

the Kriging predictor, the probabilistic classification function rewrites:

π(x) = Φ

(
0− µĜ(x)

σĜ(x)

)
if x /∈ X (9)

For points in the experimental design for which the prediction variance is equal to zero, the

above function reads:

π(x) =

 1 if x ∈ X , g(x) ≤ 0

0 if x ∈ X , g(x) > 0
(10)

It shall be again emphasized that π(x) is not the sought failure probability. It may be

interpreted as the probability that the predictor Ĝ(x) (for some prescribed deterministic x)

is negative with respect to the epistemic uncertainty.

3. Metamodel-based importance sampling

Picheny (2009) proposes to use the probabilistic classification function π (see Eq. (9)) as

a surrogate for the original indicator function 1g≤0, so that the failure probability is rewritten

from its definition in Eq. (1) as follows:

pf ε ≡
∫
Rn

π(x)fX(x) dx = EX [π(X)] (11)

It is argued here that this quantity does not equal the failure probability because it sums the

aleatory uncertainty in the random vector X and the epistemic uncertainty in the prediction
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Ĝ. This is the reason why pf ε will be referred to as the augmented failure probability in

the sequel. As a matter of fact, even if the epistemic uncertainty in the prediction can be

reduced (e.g. by enriching the DOE as proposed in Section 4), it is impossible to quantify

the contribution of each source of uncertainty in pf ε. This remark motivates the approach

introduced in this section where the probabilistic classification function is used in conjunction

with importance sampling in order to build a new estimator of the failure probability.

3.1. Importance sampling

Importance sampling (IS) consists in computing the mathematical expectation of the

failure indicator function with respect to a biased PDF which favors the failure event of

interest (Rubinstein and Kroese, 2008). The so-called instrumental density denoted by h is

assumed to dominate 1g≤0 fX , meaning that:

∀x ∈ Dx, h(x) = 0⇒ 1g≤0(x) fX(x) = 0 (12)

Given this instrumental density, the definition of the failure probability in Eq. (1) may be

rewritten as follows:

pf =

∫
Rn

1g≤0(x)
fX(x)

h(x)
h(x) dx ≡ Eh

[
1g≤0(X)

fX(X)

h(X)

]
(13)

In this expression, the expectation Eh [·] is now computed with respect to the instrumental

density h. The above definition of the failure probability easily leads to the importance

sampling estimator :

p̂f IS ≡
1

N

N∑
k=1

1g≤0
(
x(k)

) fX(x(k))

h(x(k))
(14)

where
{
x(1), . . . ,x(N)

}
is a set of samples drawn from the instrumental density h. According

to the central limit theorem, this estimation is unbiased and its quality may be measured

by means of its variance of estimation which reads:

Var [p̂f IS] =
1

N − 1

(
1

N

N∑
k=1

1g≤0(x
(k))

f(x(k))2

h(x(k))2
− p̂2f IS

)
(15)
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Rubinstein and Kroese (2008) show that this variance is zero (optimality of the IS esti-

mator) when the instrumental PDF is chosen as:

h∗(x) =
1g≤0(x) f(x)∫
1g≤0(x) f(x) dx

=
1g≤0(x) f(x)

pf
(16)

However this instrumental PDF is not implementable in practice because it involves the

sought failure probability pf in its denominator. The art of importance sampling consists in

building an instrumental density which is quasi-optimal.

3.2. A metamodel-based approximation of the optimal instrumental PDF

Different strategies have been proposed in order to build quasi-optimal instrumental PDF

suited for specific estimation problems. For instance, Melchers (1989) uses a standard nor-

mal PDF centered onto the design point obtained by FORM in the space of the independent

standardized random variables. Au and Beck (1999) resort to a kernel smoothing approx-

imation of the optimal instrumental PDF built from a set of failed samples obtained by a

Markov-chain-Monte-Carlo-based algorithm.

In this paper, it is proposed to use the probabilistic classification function in Eq. (9)

as a surrogate for the real indicator function in the optimal instrumental PDF in Eq. (16).

Hence, the proposed quasi-optimal PDF reads as follows:

ĥ∗(x) =
π(x) f(x)∫
π(x) f(x) dx

=
π(x) f(x)

pf ε
(17)

where pf ε is the augmented failure probability which has been already defined in Eq. (11).

For the sake of illustration, this quasi-optimal instrumental PDF is compared to the op-

timal (although impractical) one in Figure 1 using a two-dimensional limit state function

introduced by Der Kiureghian and Dakessian (1998).

3.3. The metamodel-based importance sampling estimator

Choosing the proposed quasi-optimal instrumental PDF (i.e. substituting ĥ∗ for h in

Eq. (13)) leads to the following new expression of the failure probability:

pf =

∫
1g≤0(x)

f(x)

ĥ∗(x)
ĥ∗(x) dx = pf ε

∫
1g≤0(x)

π(x)
ĥ∗(x) dx ≡ pf ε αcorr (18)
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(a) The optimal instrumental PDF h∗.
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(b) The proposed quasi-optimal instrumental PDF ĥ∗.

Figure 1: Comparison of the instrumental PDFs on the two-dimensional example from Der Kiureghian and

Dakessian (1998)
(
g(X1, X2) = 5−X2 − 1

2 (X1 − 0.1)2, Xi ∼ N (0, 1), i = 1, 2
)

where we have introduced αcorr ≡ Eĥ∗
[
1g≤0(X)

π(X)

]
. This means that the failure probability

is equal to the product of the augmented failure probability pf ε and a correction factor αcorr.

This correction factor is defined as the expected ratio between the real indicator function

1g≤0 and the probabilistic classification function π. Thus, if the Kriging prediction is fully

accurate, the correction factor is equal to one and the failure probability is identical to the

augmented failure probability (optimality of the proposed estimator). On the other hand,

in the more general case where the Kriging prediction is not fully accurate, the correction

factor modifies the augmented failure probability accounting for the epistemic uncertainty.

The two terms in Eq. (18) may now be estimated using Monte Carlo simulation:

p̂f ε =
1

Nε

Nε∑
i=1

π(x(i)) α̂corr =
1

Ncorr

Ncorr∑
j=1

1g≤0(h
(j))

π(h(j))
(19)

where the first Nε-sample set is generated from the original PDF fX , and the second Ncorr-

sample set is generated from the quasi-optimal instrumental PDF ĥ∗. Due to the expression

of the latter (see Eq.(17)), Markov chain Monte Carlo simulation (Robert and Casella, 2004)

is used. The present implementation makes use of a revised version of the so-called modified

Metropolis-Hastings sampler of Au and Beck (2001). In order to ensure that the samples
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used in Eq. (19) are independent, we use the so-called thinning procedure which consists in

keeping only one sample every t states of the chain (say t = 10).

According to the central limit theorem, the two estimates in Eq.(19) are unbiased and

normally distributed. Their respective variance denoted by σ2
ε and σ2

corr may be easily

derived as in Eq. (15). Finally, the proposed estimator of the failure probability simply

reads as follows:

p̂f metaIS = p̂f ε α̂corr (20)

It is important to note that both terms in Eq. (20) are independent, since they rely upon

sampling according to two independent PDFs. Based on this remark, it is shown in Appendix

A that for reasonably small values of the coefficients of variation δp̂f ε
and δα̂corr of the

two estimators p̂f ε and α̂corr (say 1% to 10%), the coefficient of variation of the proposed

estimator approximately reads:

δp̂f metaIS
≈

δε,δcorr�1

√
δ2p̂f ε

+ δ2α̂corr
(21)

4. Adaptive refinement of the probabilistic classification function

The efficiency of the approach mostly relies on the optimality of the instrumental PDF

ĥ∗. Thus it is proposed here to adaptively refine the probabilistic classification function so

that the quasi-optimal instrumental PDF ĥ∗ converges towards its optimal counterpart h∗.

4.1. Refinement strategy

There exists a relatively large literature about the adaptive refinement of a Kriging

prediction for accurate classification (or level-set approximation), see e.g. Oakley (2004);

Lee and Jung (2008); Bichon et al. (2008); Vazquez and Bect (2009); Picheny et al. (2010);

Echard et al. (2011). They all rely on the definition of a so-called in-fill criterion which is

maximum or minimum in the region of interest, namely the region where the sign of the

predicted performance function is the most uncertain. The interested reader may find the

expressions for all these criteria together with a discussed comparison on two analytical

examples in a recent paper by Bect et al. (2012).
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As an introduction to the proposed strategy, it is argued that the available approximation

of the optimal instrumental PDF after m observations, say ĥ∗(x) ∝ π(x) fX(x), is an

interesting trade-off criterion because it takes large values in regions (i) where the sign of

the predicted performance function is supposed to be negative due to π(x), and (ii) where

the probability density function fX is maximum. As a consequence, it is proposed to replace

the step of optimization of the in-fill criterion by a sampling step, as proposed in Dubourg

et al. (2011). This is achieved by considering the in-fill criterion as an improper PDF. The

algorithm proceeds as follows:

1. Sample a large population (say 104 samples) from the weighted in-fill criterion (here

ĥ∗) using a MCMC simulation technique such as the modified Metropolis-Hastings

sampler.

2. Reduce this population to its K clusters’ center (K being prescribed, see Section 5)

using the K-means clustering algorithm (MacQueen, 1967).

3. Evaluate the performance function on the K clusters’ center.

4. Enrich the former experimental design with these K new observations.

5. Update the Kriging prediction and loop back to step 1 until some target accuracy is

achieved, see Section 4.2.

The proposed sampling-based refinement strategy allows one to refine the prediction from a

batch of optimal points instead of a single best point. It thus solves the problem of locally

optimal points. Indeed, the in-fill criteria proposed in the literature commonly features

several optima thus meaning that there does not exist a single best point. In the proposed

strategy all the maxima are interpreted as modes of the improper PDF π(x) fX(x) and

this leads to local concentrations of points close to these modes in Step #1. The K-means

clustering algorithm used in the second step reduces the population generated in the first

step to the most significant modes. Note also that this approach allows one to perform

several computations of the performance model in a distributed manner (i.e. on a high

performance computing platform).

In a similar fashion, the very first experimental design is obtained by clustering a crude
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Monte Carlo sample of X (of size 104 as for the other iterations). Alternatively one may

use a latin hypercube design (LHS), see McKay et al. (1979).

4.2. Stopping criterion

Finally a metric is required to check the optimality of the probabilistic classification

function. This metric may then be used as a stopping criterion for the previously detailed

refinement strategy thus making it adaptive. The metric is based on a cross-validation

procedure. Cross-validation techniques are classically used for model selection (see e.g.

Stone, 1974). Basically, the design of experiments X = {xi, i = 1, . . . ,m} is split into a

learning subset XL and a validation subset XV such that XL ∩ XV = ∅ and XL ∪ XV = X .

The model is then built using the learning subset XL (hence denoted by g̃XL
) and validated

by comparing the predicted values g̃XL
(x) and the real values g(x) onto the validation subset

x ∈ XV . The leave-one-out technique is a special case where the learning subset is defined

as XL = X \xi. In a regression context, Allen (1971) propose to use a leave-one-out estimate

of the mean squared error referred to as the predicted residual sum of squares :

PRESS =
1

m

m∑
i=1

(
g̃X\xi

(xi)− g(xi)
)2

(22)

The metric proposed in this paper is a kind of leave-one-out estimate of the correction

factor in Eq. (18), namely:

α̂corr LOO =
1

m

m∑
i=1

1g≤0(xi)

P
[
ĜX\xi

(xi) ≤ 0
] (23)

where ĜX\xi
is the i-th leave-one-out Kriging prediction of the performance function built

from the DOE X without the i-th sample xi. This quantity should be estimated using a

minimal number of samples (say m ≥ 30) so that it is sufficiently accurate.

The reason for introducing this leave-one-out estimate of α̂corr is the following. In the

early steps of the refinement procedure, the Kriging predictor is not accurate enough to

evaluate the failure probability by means of Eq. (20) efficiently. Thus it would be ineffective

to waste costly evaluations of the true limit-state function to compute the true correction

factor in Eq. (19).
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On the contrary, the leave-one-out estimate α̂corr LOO in Eq. (23) makes use only of the

available observations in the experimental design only, so that it is fast to evaluate. As

discussed earlier in Section 3.3, a sufficient accuracy is reached when the estimate in Eq. (23)

gets close to one because it means that the probabilistic classification function converges

towards the failure indicator function. Consequently the instrumental PDF ĥ∗ converges

towards its optimal counterpart h∗. It is thus proposed to use α̂corr LOO as an indication to

stop the refinement strategy. Precisely, the iterative enrichment of X is stopped if α̂corr LOO

is in the order of magnitude of 1, say between 0.1 and 10. Note that in the case of high

dimensional and/or highly nonlinear problems, the size of the DOE may be limited to, say

mmax = 1 000, for computational efficiency.

It may happen that a leave-one-out estimate of the Kriging variance σ2
ĜX\xi

(xi) gets

close or even equal to zero. This is problematic because the ratio in Eq. (23) might not be

defined in such cases. Indeed, if the mean prediction µĜX\xi
(xi) is positive, the probabilistic

classification function in the denominator equals zero and it may cause an exception. It is

argued that this variance should never be exactly zero (the Kriging variance equals zero only

at the samples in the DOE, here X \ xi), so that it is proposed to bound the probabilistic

classification function above a reasonably low value (say the machine precision, εM ≈ 10−16).

4.3. Summary of the implementation

The purpose of this section is to summarize the proposed metamodel-based importance

sampling algorithm. The flowchart of the algorithm is given in Figure 4.3. It is essentially

divided in three independent steps, two of which could potentially be run in parallel.

First, the algorithm only requires the choice of a targeted coefficient of variation δtarget

for the final estimate p̂f metaIS and the number K of points that should be added at each

refinement iteration. Note that the user may also want to limit the total number of calls to

the original limit-state function through the Nmax parameter.
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Initialization

Maximum number of performance function evaluations

Targeted coefficient of variation

Number of points to add per refinement iteration

Adaptive refinement of the instrumental PDF

Evaluate the performance function

onto an initial space-filling DOE

Build/Refine the kriging model
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Evaluate the performance function at the
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No

Meta-model based importance sampling

Compute the final estimator of the failure

probability                       and its CoV           
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Compute the probabilistic classification 

function on the samples
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failure probability          from the samples
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Compute the probabilistic classification 
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from the instrumental PDF       

Update the estimate of the correction

factor             from the samples

Evaluate the performance function

on the samples

No
or

or

Figure 2: Flowchart of the proposed metamodel-based importance sampling algorithm

Then, the first step of the algorithm is to build a reasonably accurate approximation of

the probabilistic classification function that will bring a significant variance reduction for

the final importance-sampling-based estimate of the failure probability. Note that this step

is optional in the case the analysis is resumed from an existing DOE.

The two other steps are independent and might be run in parallel. They consist in

using Monte Carlo simulation for the estimation of the two terms α̂corr and p̂f ε defining the
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proposed estimator p̂f metaIS, see Section 3. In the current implementation, we targeted the

same coefficient of variation δε = δcorr = δtarget/
√

2 for the two estimators. It could also be

possible to implement these two steps in two independent threads that would communicate

between each other and decide whether to stop the simulation or not based on the estimate

of the final coefficient of variation. It should also be pointed out that it is easier to reduce

the estimation variance on the augmented failure probability than the one on the correction

factor because the former only depends on the Kriging surrogate.

5. Application examples

In this section, the proposed strategy is applied to a number of structural reliability

problems for the sake of illustration. The first examples involve simple analytical limit-state

functions and can thus be used to validate the implementation of the proposed strategy. The

last example involves a more sophisticated nonlinear finite element model coupled with a

high dimensional stochastic model so as to prove the applicability of the strategy to industrial

problems.

5.1. Analytical limit-state functions

5.1.1. Example 1: Influence of the dimension

This first structural reliability example is taken from Rackwitz (2001). It involves n

independent lognormal random variates with mean value µ = 1 and standard deviation

σ = 0.2. The performance function reads as follows:

g(x) =
(
n+ a σ

√
n
)
−

n∑
i=1

xi (24)

where a is set equal to 3 for the present application. The dimension of the problem is

successively set equal to n = {2, 50, 100} to assess the influence of the dimension on the

proposed estimator.

The results and performance of the proposed strategy are compared to that obtained by

other state-of-the-art reliability methods in Table 1. It can first be seen that the FORM
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approximation becomes severely wrong when the dimension increases because of the curva-

ture of the limit-state surface, as pointed out by Rackwitz (2001). Then, all Monte-Carlo-

simulation-based methods were tuned on purpose to reach a 2% target coefficient of variation

(c.o.v.). Since this problem features a single design point, the design-point-based importance

sampling strategy (P ∗-IS) proposed by Melchers (1989) performs very well and yields un-

biased estimates of the failure probability. Note however that the unicity of this point

cannot be guaranteed in general. The number of calls required by this approach accounts

for both the search for the design point (nFORM) and the importance sampling scheme (NIS).

Eventually, meta-model-based importance sampling (Meta-IS) yields unbiased estimates of

the failure probability with a significant variance reduction that makes it competitive with

P ∗-IS.

Method Monte Carlo FORM P ∗-ISa Meta-ISb

N 500,000 31 31 + 8,600 12 + 100

pf 4.98× 10−3 3.84× 10−3 5.02× 10−3 5.03× 10−3n = 2

C.o.V. <2% – <2% <2%

N 1,329,400 166 166 + 13,900 300 + 1,500

pf 1.88× 10−3 1.54× 10−4 1.97× 10−3 1.95× 10−3n = 50

C.o.V. <2% – <2% <2%

N 1,385,100 316 316 + 18,800 600 + 2,000

pf 1.80× 10−3 4.20× 10−5 1.76× 10−3 1.74× 10−3n = 100

C.o.V. <2% – <2% <2%

aN = nFORM +NIS
bN = m+Ncorr.

Table 1: Results for Example 1 (Rackwitz, 2001): g(X) = (n+ a σ
√
n)−

n∑
i=1

Xi;

Using the mean of the Kriging prediction obtained from the final DOE as a surrogate for

the limit-state function in a crude Monte Carlo simulation results in the following probability

estimates: 4.69×10−3, 1.49×10−3, 1.21×10−3 for n = 2, 50 and 100 respectively (and up to a

2% c.o.v). Despite these probabilities seem reasonably accurate in the light of the reference
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results provided by Monte Carlo sampling, it must be noted that there is no proof they

are in general. Detailed results regarding the application of metamodel-based importance

sampling to this example are given in Table 2. Note that the correction factor increases

with the dimension. In low dimension (n = 2) the Kriging surrogate almost exactly equals

the performance function (at least in the vicinity of the limit-state surface) hence α̂corr = 1

and p̂f metaIS = p̂f ε (no misclassification according to the sign of the surrogate µĝ). In

larger dimensions the surrogate loses accuracy, and the correction factor gets more and

more important. The size of the DOE from which the Kriging prediction is built is given

as the product between the number of refinement iterations and the number K of clusters’

center added per iteration. K is chosen equal to the number of input random variables

(n = {2, 50, 100}).

n 2 50 100

m 6× 2 6× 50 6× 100

p̂f ε 5.03× 10−3 1.97× 10−3 1.87× 10−3

δε ≤ 1.41% ≤ 1.41% ≤ 1.41%

Ncorr 100 1,500 2,000

α̂corr 1 0.99 0.93

δcorr 0% ≤ 1.41% ≤ 1.41%

m+Ncorr 112 1,800 2,700

p̂f metaIS 5.03× 10−3 1.95× 10−3 1.74× 10−3

δmetaIS ≤ 1.41% ≤ 2% ≤ 2%

Table 2: Detailed results for the application of metamodel-based importance sampling to Example 1 (Rack-

witz, 2001): g(X) = (n+ a σ
√
n)−

n∑
i=1

Xi;

Table 3 provides some additional information about the computational time required

by the sampling-clustering-based refinement strategy detailed in Section 4.1. 104 samples

from the refinement PDF are required in the present setup of the algorithm. These samples

are generated here using the modified Metropolis-Hastings algorithm . The Markov chains
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are thinned by retaining one sample every 10 states. Hence this requires 105 evaluations

of the probabilistic classification function π per refinement iteration. K-means clustering is

used here to cluster K = n groups out of the 104 points generated in the previous step. The

sampling time obviously increases with both the dimension n and the size of the experimental

design because the Kriging surrogates becomes more and more expensive to evaluate. The

clustering time depends on the size of the sample (fixed here equal to 104 for all runs) and

the number of groups K. However, these computation times remain acceptable with respect

to that required by a single evaluation of a finite-element-based limit-state function.

Refinement iteration init. 2 3 4 5 6

DOE size 2 4 6 8 10 12

Sampling time (s) <1 3 4 4 4 4n = 2

Clustering time (s) <1 <1 <1 <1 <1 <1

DOE size 50 100 150 200 250 300

Sampling time (s) <1 9 18 28 36 54n = 50

Clustering time (s) 6 3 5 5 6 6

DOE size 100 200 300 400 500 600

Sampling time (s) <1 22 46 62 105 143n = 100

Clustering time (s) 2 2 3 2 2 2

Table 3: Computational times required by the sampling/clustering-based refinement strategy on Example 1

using MatlabTM on an Intel R© CoreTM i5 CPU M560 @2.67GHz running Ubuntu Linux 10.04 LTS codename

“Lucid Lynx”.

5.1.2. Example 2: Multiple design points

A two-dimensional series system from the article by Au and Beck (1999) is taken as a sec-

ond example for demonstrating the applicability of Meta-IS to limit-state surfaces featuring

multiple design points. The limit-state function reads as follows:

g(x1, x2) = min

 c− 1− x2 + exp (−x21/10) + (x1/5)4

c2/2− x1 x2

 (25)
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where x1 and x2 are the realizations of two independent standard Gaussian random vari-

ates X1 and X2. The limit-state surface features 3 design points whose coordinates are

x∗ (1) = (0, c)T, x∗ (2) = (c/
√

2, c/
√

2)T and x∗ (3) = (−c/
√

2, −c/
√

2)T. Au and Beck

(1999) focused on the two first design points and apparently omitted the third one without

much consequence on the results they present though.

Comparative results are shown in Table 4. Single-design-point-based approaches are not

used here since they would be mistaken by the 3 design points. Sampling-based approaches

are tuned on purpose to reach a 5% c.o.v, except for Au and Beck’s results which are reported

from the original article. Crude Monte Carlo estimates are considered here as reference. The

results of Au and Beck (1999) are averaged over the 5 runs of their algorithm in the case

where they use N = 500 samples as read in Table 1 of the original article. The coefficients of

variation are estimated empirically on each sample of the 5 probability estimates. Meta-IS

yields unbiased estimates of the failure probability for all values of c because the Kriging

surrogate captured the three design points. It can be seen that Meta-IS saves a significant

amount of calls to the performance function with respect to the other sampling approaches.

The failure probabilities estimated by crude Monte Carlo sampling on the means of the

Kriging predictors for c = 3, 4 and 5 are respectively equal to p̃f = 3.04× 10−3, 1.05× 10−4

and 7.05× 10−7 up to a 5% c.o.v.

Meta-IS is now run 30 times in the sole case where c = 3 in order to prove that (i) the

estimator is unbiased, and that (ii) the c.o.v given in Eq. (21) is a sound estimate of its

accuracy (see also Appendix A). The average of the 30 estimates of the failure probability is

pf = 3.36× 10−3 up to a 7% empirical c.o.v.) which is slightly larger than the target (5%)

estimated by means of Eq. (21).

5.1.3. Example 3: Concave limit-state surface

This structural reliability example was first proposed in the report by Der Kiureghian

and de Stefano (1991). It was then used for benchmark purposes in the recent article by

Bourinet et al. (2011). It consists in studying the failure of a two-degree-of-freedom damped

oscillator under a white-noise base excitation. The probabilistic model is composed of n = 8
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Method Monte Carlo (ref) Subset Au and Beck (1999)ab Meta-ISc

N 120,000 300,000 100 + 500 44 + 600

pf 3.35× 10−3 3.48× 10−3 2.47× 10−3 3.54× 10−3c = 3

C.o.V. <5% <3% 8% <5%

N 4,620,000 500,000 100 + 500 64 + 600

pf 8.68× 10−5 8.34× 10−5 6.51× 10−5 8.60× 10−5c = 4

C.o.V. <5% <4% 10% <5%

N 422,110,000 700,000 100 + 500 40 + 2,900

pf 9.48× 10−7 6.55× 10−7 6.54× 10−7 9.17× 10−7c = 5

C.o.V. <5% <5% 12% <5%

aN = M +NIS.
bAveraged from Au and Beck (1999, Table 1, N = 500).
cN = m+Ncorr.

Table 4: Results for Example 2 (Au and Beck, 1999): g(X1, X2) =

min
{
c− 1−X2 + exp

(
−X2

1/10
)

+ (X1/5)
4

; c2/2−X1X2

}
;

independent random variables whose distributions are defined in Table 5. The mean value

od Fs is varied from 15.0 to 27.5 as in Bourinet et al. (2011). The limit-state function reads

as follows:

g(x) = Fs − p ks
[
π

S0

4 ζs ω3
s

ζa ζs
ζp ζs (4 ζ2a + θ2) + γ ζ2a

(ζp ω
3
p + ζs ω

3
s)ωp

4 ζa ω4
a

]1/2
(26)

It is characterized by a highly nonlinear limit-state surface around a single design point.

The adaptive refinement of the Kriging surrogate is initialized with K0 = 32 points and

K = 16 new points are sequentially added until the leave-one-out estimate of the correction

factor reaches a stable value between 0.1 and 10. The adaptive importance sampling scheme

uses 100 Markov chains incremented in parallel and a 5% c.o.v. is targeted. Table 6 presents

the results obtained on this example for the three values of µFs . For the sake of validation,

the results yielded by the proposed metamodel-based importance sampling technique are

compared with those obtained by subset sampling (using a sample size of 105 per step )

which is considered here as the reference. FORM results were obtained by Der Kiureghian

and de Stefano (1991) and confirmed by Bourinet et al. (2011) using the iHLRF algorithm
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Variable Distribution Mean C.o.V.

mp Lognormal 1.5 10%

ms Lognormal 0.01 10%

kp Lognormal 1 20%

ks Lognormal 0.01 20%

ζp Lognormal 0.05 40%

ζs Lognormal 0.02 50%

FS Lognormal {15, 21.5, 27.5} 10%

S0 Lognormal 100 10%

Table 5: Probabilistic model for Example 3 (two-degree of freedom damped oscillator).

(Zhang and Der Kiureghian, 1995). It can be seen that the “bias” yielded by the FORM

approximation is rather significant, especially when the probability of failure is small (up to

one order of magnitude).

The results yielded by the proposed strategy are finally compared to those obtained by

Bourinet et al.’s surrogate-based approach. From the computational cost point of view, it

can be seen that (i) for the proposed strategy, the total number of calls to the original

performance function is comparable with that required by their substitution approach, and

that (ii) both approaches yield accurate estimates of the quantity of interest. However, it

should again be noted that surrogate-based approaches do not yield statistically consistent

results while Meta-IS does.

Meta-IS is run again for the sole case where µFs = 27.5. For this run, the adaptive

refinement strategy of the experimental design is arbitrarily stopped after 10 iterations in

order to prove (i) the ability of Meta-IS to provide unbiased estimates even from a coarse

Kriging surrogate, and (ii) the importance of refining the surrogate to reduce the estimation

variance. The experimental design now contains m = 176 points which is significantly less

than the 480 points used in the first adaptive run. The failure probability estimated by

subset simulation using the mean of the Kriging predictor yields p̃f = 8.26× 10−10 up to a

7% c.o.v. It should be noted that this estimate is heavily biased (by 3 orders of magnitude)
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µFs
values FORMa Subset (ref) SVM + Subseta Meta-ISb

N 1,179 300,000 1,719 464 + 200

pf 2.19× 10−2 4.63× 10−3 4.78× 10−3 4.80× 10−315

C.o.V. – <3% <4% <5%

N 2,520 500,000 2,865 336 + 400

pf 3.50× 10−4 4.75× 10−5 4.42× 10−5 4.46× 10−521.5

C.o.V. – <4% <7% <5%

N 2,727 700,000 4,011 480 + 200

pf 3.91× 10−6 3.47× 10−7 3.66× 10−7 3.76× 10−727.5

C.o.V. – <5% <10% <5%

aAs computed by Bourinet et al. (2011).
bN = m+Ncorr.

Table 6: Results for Example 3 (two-degree of freedom damped oscillator).

with respect to the reference solution provided in Table 6. This emphasize the fact that the

crude substitution of surrogate model may be a hazardous practice in structural reliability

analysis.

The augmented failure probability is pf ε = 3.17 × 10−8 (c.o.v.=4%). The correction

factor estimated with Ncorr = 20, 000 samples equals αcorr = 4.21 (c.o.v.=17%). Hence, the

coarse but unbiased Meta-IS estimate of the failure probability is 1.33× 10−7 (c.o.v.=17%).

Note that the total computational cost (176 + 20, 000) is much greater than that presented

in Table 6 (480 + 200). As a conclusion, it appears more efficient to spend more time in

enriching the DOE in order to obtain a more accurate Kriging predictor.
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5.2. Nonlinear stability analysis of an imperfect shell roof

R =
 76
00 
mm

80 deg

µh = 76 mm

L
= 
15
20
0 
m
m

q = 1 N/mm2X

Y

Z

Figure 3: Illustration of the Scordelis-Lo shell roof example.

The mechanical model for this example is inspired by Scordelis and Lo (1961). It concerns

the buckling analysis of a cylindrical shell roof whose dimensions are given in Figure 3. The

longitudinal edges of the roof are free while its circumferential edges are supported by rigid

diaphragms (radial displacement fixed to zero). Its constitutive material is assumed to have

a nonlinear elastic Ramberg-Osgood material behavior. It is subjected to a constant surface

load q and the structure is considered to fail if its critical buckling load qcr is less than a

prescribed service load of magnitude q0 = 0.18 MPa, so that the associated performance

function may be defined as follows:

g(ξ) = qcr(ξ)− q0 (27)

where ξ denotes the outcome of the random vector Ξ introduced in the sequel.

The critical buckling load qcr is determined by means of the asymptotic numerical method

(Cochelin, 1994) coupled with a 30 × 30 8-node Büchter-Ramm shell finite element mesh

(Büchter et al., 1994) using the EVE finite element code. This academic software was

initially developed by Cochelin (1994) and further developed by Noirfalise et al. (2008). The
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stochastic model, inspired from Dubourg et al. (2009), involves four independent random

fields defined over the roof surface. They describe respectively the initial shape imperfection

ζ, the material Young’s modulus E, the material yield stress σy and the shell thickness h.

The random shape imperfection is modeled as a linear combination of the three most critical

Euler buckling modes’ shape {Uk, k = 1, . . . , 3}, so that it reads as follows:

ζ(x, θ) =
3∑

k=1

Ξζ k Uk(x, θ) (28)

where {Ξζ k, k = 1, . . . , 3} are three independent Gaussian random variates with mean µζ =

0 and standard deviation σζ ≈ 9.5 mm (see details in Dubourg (2011)). The other three

random fields are assumed independent and lognormal with constant means µh = 76 mm,

µE = 200, 000 MPa and µσy = 390 MPa and c.o.v. δh = 5%, δE = 3% and δσy = 7%.

They are represented by three Karhunen-Loève expansions of three independent standard

Gaussian random fields, whose sample paths are translated into lognormal sample paths, see

Dubourg et al. (2009) for the mapping. These three Gaussian random fields are assumed

to have the same isotropic squared exponential autocorrelation function with a correlation

length ` = 3, 500 mm. Due to the choice of this correlation function, the Fredholm integral

equation involved in the Karhunen-Loève discretization scheme has no analytical solution.

A so-called wavelet-Galerkin numerical procedure was thus used as detailed in Phoon et al.

(2002). Each random field is simulated by means of 30 independent standard Gaussian

random variates leading to a relative mean squared discretization error of 3.70%. Finally

the complete stochastic model involves 93 independent random variables.

The reliability results are gathered in Table 7. The proposed importance sampling scheme

leads to a failure probability in full agreement with the value obtained by subset simulation

(as implemented in the FERUM toolbox v4.0 by Bourinet et al., 2009) which validates the

proposed strategy. In this example the augmented failure probability p̂f ε is equal to 2.06×

10−4 (with a c.o.v. of 5.70%), and the correction factor α̂corr is equal to 0.641 (with a c.o.v.

of 12.49%). The instrumental PDF is sampled here by means of the slice sampler of Neal

(2003) which is another MCMC sampling technique (see also Dubourg, 2011, Appendix B).

A multiple FORM analysis revealed the existence of 4 most probable failure configurations
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Method Subset (ref.) Multi-FORM Meta-IS

DOE size - - 6× 93

MPFP search - ≈ 10, 000 -

Simulations 20, 000 - 9, 464

pf estimates 1.27× 10−4 1.22× 10−4 1.32× 10−4

C.o.V. 12.36% - 13.75%

Table 7: Comparative results for the shell roof example adapted from Dubourg et al. (2009).

identified by means of the restarted i -HLRF algorithm from Der Kiureghian and Dakessian

(1998). These 4 failure modes corresponds to the 4 extreme cases for which the “demand”

random field ζ is maximal in the corner of the roof whereas the “capacity” random fields

E, σy and h are minimal. The combination of these 4 failure modes in a series system

then allowed to give a Multi-FORM approximation of the failure probability (third column

in Table 7). In this case, the Ditlevsen’s bounds coincide (up to the accuracy provided in

Table 7). For the sake of illustration, one of the 4 most probable failure configurations is

shown in Figure 4. This proves the ability of the proposed strategy to deal with reliability

problems featuring multiple design points in a reasonably high dimension.

6. Conclusion

Starting from the double premise that the usual surrogate-based reliability analyses do

not permit to quantify the error made by using the metamodel instead of the original limit-

state function, and that the existing variance reduction techniques remain time-consuming

when the performance function involves the output of an expensive-to-evaluate black box

function, an hybrid strategy has been proposed.

First, a probabilistic classification function based on the post-processing of a Kriging pre-

diction was introduced. This function allows a smoother classification than its deterministic

counterpart (i.e. the indicator function of the failure domain) accounting for the epistemic

uncertainty in the Kriging prediction. The probabilistic classification is then used to for-
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Figure 4: One of the 4 most probable failure configurations.

mulate a quasi-optimal importance sampling density. Using elementary algebra the failure

probability is recast as a product of two terms, namely the augmented failure probability pf ε

which is evaluated by means of the meta-model only, and a correction factor αcorr that is

computed from evaluations of the original limit-state function. In order to decide whether

the Kriging surrogate is accurate enough, a leave-one-out estimate of αcorr is used and the

iterative refinement is stopped when it is in the order of magnitude of 1. Once the Kriging

surrogate has been built, the two terms of the product defining the failure probability may

be evaluated in parallel.

The method turned out to be efficient on various application examples, as shown in this

paper and further detailed in Dubourg (2011). It can handle problems featuring a reasonably

high number of random variables and multiple design points. Further work is in progress to

include the proposed algorithm within a reliability-based design optimization framework.
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Appendix A. Calculation of the coefficient of variation

The estimator in Eq. (20) is defined as the product of two estimators. Let us denote

these two unbiased independent estimators as p̂1, p̂2 with variances σ2
1, σ2

2 for the sake of

clarity. The calculation of the variance of the final estimator p̂ = p̂1 p̂2 proceeds as follows.

First, according to its definition, the variance reads:

σ2
p̂ ≡ Var [p̂] ≡ E

[
p̂1

2 p̂2
2
]
− E [p̂1 p̂2]

2 (A.1)

Since the two estimators p̂1 and p̂2 are independent, the variance also reads:

σ2
p̂ = E

[
p̂1

2
]
E
[
p̂2

2
]
− E [p̂1]

2 E [p̂2]
2 (A.2)

which may be further elaborated according to the König-Huyghens theorem:

σ2
p̂ =

(
E [p̂1]

2 + σ2
1

) (
E [p̂2]

2 + σ2
2

)
− E [p̂1]

2 E [p̂2]
2 (A.3)

Due to the unbiasedness of the estimators, one finally gets:

σ2
p̂ =

(
p21 + σ2

1

) (
p22 + σ2

2

)
− p21 p22 (A.4)

= σ2
1 σ

2
2 + p21 σ

2
2 + p22 σ

2
1 (A.5)

Denoting by δi = σi/pi the coefficients of variation of p̂i, i = 1, 2, the coefficient of variation

of p̂ = p̂1 p̂2 eventually reads:

δ ≡ σp̂
p1 p2

=
√
δ21 + δ22 + δ21 δ

2
2 (A.6)

In practice usual target coefficients of variation δtarget range from 1% to 10% so that:

δ≈
√
δ21 + δ22 when δ1, δ2 � 1 (A.7)

27



References

Allen, D., 1971. The prediction sum of squares as a criterion for selecting prediction variables. Tech. Rep. 23,

Dept. of Statistics, University of Kentucky.

Au, S., Beck, J., 1999. A new adaptive importance sampling scheme for reliability calculations. Structural

Safety 21 (2), 135–158.

Au, S., Beck, J., 2001. Estimation of small failure probabilities in high dimensions by subset simulation.

Prob. Eng. Mech. 16 (4), 263–277.

Bect, J., Ginsbourger, D., Li, L., Picheny, V., Vazquez, E., 2012. Sequential design of computer experiments

for the estimation of a probability of failure. Stat. Comput. 22 (3), 773–793.

Bichon, B., Eldred, M., Swiler, L., Mahadevan, S., McFarland, J., 2008. Efficient global reliability analysis

for nonlinear implicit performance functions. AIAA Journal 46 (10), 2459–2468.

Bourinet, J.-M., Deheeger, F., Lemaire, M., 2011. Assessing small failure probabilities by combined subset

simulation and support vector machines. Structural Safety 33 (6), 343–353.

Bourinet, J.-M., Mattrand, C., Dubourg, V., 2009. A review of recent features and improvements added to

FERUM software. In: Proc. ICOSSAR’09, Int Conf. on Structural Safety And Reliability, Osaka, Japan.

Breitung, K., 1984. Asymptotic approximation for multinormal integrals. J. Eng. Mech. 110 (3), 357–366.

Bucher, C., Bourgund, U., 1990. A fast and efficient response surface approach for structural reliability

problems. Structural Safety 7, 57–66.
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