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ABSTRACT: Global sensitivity analysis aims at quantifying the uncertainty of the output of a computer
model that may be attributed to each input parameter or combination thereof. Variance decomposition tech-
niques that lead to the well-known Sobol’ indices are now well established. However this classical framework
only holds for independent input parameters. Moreover, when the computational model under consideration is
costly to evaluate, it is not possible to resort to crude Monte Carlo simulation to evaluate sensitivity indices. In
this paper we extend the polynomial chaos-based Sobol’ indices derived by Sudret (2006, 2008) to the case of
dependent input parameters using the covariance decomposition recently proposed by Li et al. . The functional
decomposition which is natively given by the polynomial chaos expansion is taken advantage of, and the pro-
posed approach is consistent with the classical Sobol’ indices when the input variables are independent. The
methodology is illustrated on a tolerance analysis problem.

1 INTRODUCTION

Computer simulation has become an inescapable tool
of modern engineering. Computational models of
ever increasing complexity are built by engineers and
scientists in order to describe in the most refined
way complex natural or man-made systems. However
computer models always represent an idealized vision
of the real world. In this context it is important to as-
sess the uncertainty in the model predictions that are
caused by the natural variability (aleatory uncertainty)
and lack of knowledge (epistemic uncertainty) in the
model input parameters.

In the field of uncertainty quantification, sensitiv-
ity analysis aims at determining what are the in-
put parameters or combinations thereof that have the
largest impact onto the model predictions, i.e. those
which explain at best the response variability. A re-
view of classical sensitivity analysis can be found in
Saltelli et al. (2004). In this paper we focus on so-
called variance-based sensitivity indices originally in-
troduced by Sobol’ (1993). This approach is based on
the decomposition of the variance of the model re-
sponse into a sum of contributions that can be related
to each single model input parameter, pairs of param-
eters, triplets, etc. The main drawback of these so-
called Sobol’ indices is that there definition assumes

that the input parameters of the computational model
are statistically independent.

In engineering problems though, many situations
exhibit correlations between model parameters, e.g.
between loads applied onto a structural system or
between material parameters describing a constitu-
tive law. Deriving sensitivity indices that are able
to account for the input correlation structure is thus
of practical importance. Until recently not much at-
tention has been devoted to this topic. Distribution-
based sensitivity indices have been introduced by
Borgonovo (2007), Borgonovo et al. (2011), which
are equally defined when the model input parame-
ters are dependent or independent. The interpretation
of the resulting δ-indices is not easy though since
they do not sum up to 1 as in the case of Sobol’
indices. In contrast several approaches to generalize
the Sobol’ indices to the case of dependent parame-
ters have been recently proposed, see Xu and Gertner
(2008), Da Veiga et al. (2009), Mara and Tarantola
(2012), Kucherenko et al. (2012). However no con-
sensus has been attained so far.

In this paper the covariance decomposition origi-
nally proposed by Li et al. (2010) is exploited. In the
original paper the authors first build a so-called High-
Dimensional Model Representation (HDMR) of the
model. In the present paper we propose to make use



of polynomial chaos expansions (Ghanem & Spanos
2003) which have already proven efficient for sensi-
tivity analysis in the case of independent input param-
eters, see Sudret (2008), Blatman and Sudret (2010).

As a summary the goal of the paper is to provide
a computationally efficient framework for sensitiv-
ity analysis in case of dependent parameters which
is based on a covariance decomposition of the model
output and polynomial chaos expansions. The paper is
organized as follows: in Section 2 the basics of poly-
nomial chaos expansions is summarized. In Section 3
the tools of variance-based sensitivity analysis are re-
called. In Section 4 the proposed polynomial chaos /
covariance-based sensitivity indiced are derived. The
approach is illustrated by two application examples in
Section 5.

2 POLYNOMIAL CHAOS EXPANSIONS

Let us consider a computational model M : x ∈
DX ⊂ RM 7→ y =M(x) ∈ R. The uncertain input
parameters are modelled by a random vector X with
DX through its probability density function (PDF)
denoted by fX . We assume that the model output
has a finite variance, i.e. Var [M(X)] < +∞. In this
case Y =M(X) belongs to the Hilbert space of sec-
ond order random variables. Thus Y may be repre-
sented by its coordinates onto a countably infinite ba-
sis (Soize & Ghanem 2004):

Y =M(X) =
∑
α∈NM

yαΨα(X) (1)

where the construction of the basis
{

Ψα , α ∈ NM
}

is now described. Assume now that the input random
vector X has independent components, i.e. fX(x) =∏M

i=1 fXi
(xi) where fXi

is the marginal distribution
of the i-th component Xi. It is possible to define an
Hilbertian basis made of multivariate polynomials in
the input random vector. More precisely, for any M -
tuple α = {α1, . . . , αM}, one defines:

Ψα(X) =
M∏
i=1

P (i)
αi

(Xi) (2)

where
{
P

(i)
n , n ∈ N

}
is the set of orthonormal poly-

nomials with respect to the probability measure
P (dxi) = fXi

(xi)dxi. By construction the multivari-
ate basis is orthonormal (δαβ is the Kronecker sym-
bol):

E [Ψα(X) Ψβ(X)] = δαβ (3)

For computational purpose, the series is truncated
by selected a truncation setA, which lead to the poly-
nomial chaos approximation:

YA =MA(X)
def
=
∑
α∈A

yαΨα(X) (4)

For instance, the truncation scheme may corre-
spond to all the multivariate polynomials whose
total degree (computed as ||α||1 =

∑M
i=1αi) is

smaller than or equal to a prescribed p, namely
AM,p =

{
α :

∑M
i=1αi ≤ p

}
. Note that other trunca-

tion schemes such as the hyperbolic sets may be more
appropriate for large dimensional problems, see Blat-
man & Sudret (2011).

The set of PC coefficients {yα, α ∈ A} in Eq.(4)
are interpreted as the coordinates of random variable
Y in the orthonormal basis made of the Ψα’s. Many
computational methods have been proposed for their
evaluation. In practical engineering applications, so-
called non intrusive methods are most suited, in the
sense that they only use a set of runs of the origi-
nal modelM using selected points in the domain of
definition of the input parameters, namely a so-called
experimental design denoted by X = {x1, . . . ,xN}.
Such non intrusive methods include stochatic colloca-
tion approaches based on sparse grids (Xiu 2007), re-
gression (Berveiller, Sudret, & Lemaire 2006) or vari-
able selection techniques such as Least Angle Regres-
sion (Blatman & Sudret 2011). In this paper we focus
on classical least-square regression for the sake of il-
lustration.

The idea behind least-square regression is to con-
sider the infinite series in Eq.(1) as a sum of the
truncated series in Eq.(4) and a residual. The coef-
ficients yMS

def
= {yα , α ∈ A} are obtained by mini-

mizing the empirical mean-square error between the
original model response and its approximation by PC
expansion over the selected experimental design:

yMS = arg min
y∈RcardA

N∑
i=1

[
M(x(i))−

∑
α∈A

yαΨα(x(i))

]2

(5)

Typical choices of experimental designs are Latin Hy-
percube designs or low-discrepancy sequences, and
the size of the experimental design is selected by the
thumb rule N = 2− 3 cardA. Note that robust error
estimates based on cross-validation techniques may
be derived, see Blatman & Sudret (2010).

As a conclusion, based on an experimental de-
sign X of appropriate size and the model responses
{M(xi) i = 1, . . . ,N}, a surrogate model of the
original model is obtained, which is nothing but a
polynomial response surface with specific orthogo-
nality properties.

3 SENSITIVITY ANALYSIS

3.1 Sobol’ indices

Considering a computational model M with inde-
pendent uncertain input parameters gathered in X ,



the Sobol’ decomposition (also known as functional
ANOVA decomposition) reads:

M(x) =M0 +
M∑
i=1

Mi(xi)

+
∑

1≤i<j≤M

Mij(xi, xj) + · · ·+M12...M(x)

(6)

In this equation, M0 is the mean value of the re-
sponse, i.e. M0 = E [M(X)] and the other terms
are summands of increasing order. Introducing the
generic index set u def

= {i1, . . . , ik} ⊂ {1, . . . ,M} and
denoting by xu the subvector of x obtained by ex-
tracting the components labelled by the indices in u,
the above equation concisely rewrites:

M(x) =M0 +
∑

u⊂{1, ... ,M}
u6=∅

Mu(xu) (7)

Imposing that these summands satisfy the following
orthogonality property:

E [Mu(xu)Mv(xv)] = 0 ∀u, v ⊂ {1, . . . ,M} (8)

the above decomposition is unique. As a consequence
the variance of the model response:

Var [M(X)] = E
[
(M(X)−M0)

2] (9)

can be computed by substituting for Eq.(6) into
Eq.(9). It reduces to the sum of the variances of the
summands since the cross terms cancel out due to
Eq.(8):

Var [M(X)] =
∑

u⊂{1, ... ,M}

Var [Mu(X)] (10)

The Sobol’ indices are then defined by the normalized
variances, i.e. :

Su = Var [Mu(X)]/Var [M(X)] (11)

By construction they sum up to 1. The first or-
der indices {Si, i = 1, . . . ,M} characterize the por-
tion of the output variance that can be attributed to
each single parameter Xi. The second order indices
{Sij,1 ≤ i < j ≤M} correspond to the second-order
interaction effects, etc.

3.2 Sobol’ indices using polynomial chaos
expansions

The traditional approach to evaluating the Sobol’ in-
dices defined above is based on Monte Carlo simu-
lation. Following the original estimator developed in
Sobol’ (1993), several improved estimators have been

proposed, see e.g. Janon et al. (2012) for recent devel-
opments including asymptotic properties. Whatever
the selected estimator, the computational cost in or-
der to get an accurate result is still large due to the
sampling procedure.

In contrast polynomial chaos-based Sobol’ indices
provide an exact result for the sensitivity indices once
the PC expansion is available. As originally shown in
Sudret (2006), Sudret (2008), the truncated expansion
in Eq.(4) may be rearranged so as to reflect the de-
composition into summands of increasing order. For
any non-empty set u ⊂ {1, . . . ,M} and any finite
truncation set A ⊂ NM let us define:

Au = {α ∈ A : k ∈ u⇔ αk 6= 0, k = 1, . . . ,M}

(12)

In other words Au contains all the multi-indices
within the truncation setA which have non zero com-
ponents αk 6= 0 if and only if k ∈ u. The sum of the
associated PC expansion terms form a function which
depends only on the input variables xu. The reorder-
ing of Eq.(4) reads:

MA(x) = y0 +
∑

u⊂{1, ... ,M}
u6=∅

∑
α∈Au

yαΨα(x) (13)

As the Sobol’ decomposition is unique, the compar-
ison of Eqs.(7) and (13) readily provides the expres-
sion of each summand for the PC expansion:

Mu(xu) =
∑
α∈Au

yαΨα(X) (14)

Due to the orthonormality of the polynomial chaos
basis (see Eq.(3)) the variance of the truncated PC ex-
pansion (resp. of a given summand) reads:

Var [YA] =
∑

α∈A ,α 6=0

y2α

Var [Mu(Xu)] =
∑
α∈Au

y2α

(15)

and the associated Sobol’ indices in Eq.(11) is the
mere ratio of these two quantities.

As a conclusion, once a PC expansion is available,
the computation of the Sobol’ indices reduces to ele-
mentary operations on the coefficients of the expan-
sion.

4 COVARIANCE-BASED SENSITIVITY
INDICES USING PC EXPANSIONS

4.1 Introduction

As shown in the previous section, a truncated poly-
nomial chaos expansion not only provides a surrogate



model MA of the original computational model M,
it also yields a functional decomposition in which the
first order effects as well as the second and higher or-
der interaction terms readily appear. When the input
variables in X are independent the polynomial chaos
basis is orthonormal by construction so that the vari-
ous variances that must be computed to evaluate the
Sobol’ indices are easily obtained.

Consider now the general case where the input ran-
dom vector has dependent components. Introducing
the marginal CDF and PDF of each component Xi,
respectively denoted by FXi

and fXi
, the joint PDF

of X may be represented using the copula theory
(Nelsen 1999) as follows:

fX(x) = c(FX1(x1), . . . , FXM
(xM))·

M∏
i=1

fXi
(xi)

(16)

where c(.) is the copula density function (which re-
duces to c = 1 in the independent case).

Due to the statistical dependence between the Xi’s
it is not possible anymore to derive a unique Sobol’-
like decomposition in terms of orthogonal summands
of increasing order, as Eq.(7) in the independent case,
see e.g. Chastaings, Gamboa, & Prieur (2012).

However, provided the computational model M
may be given an approximate functional decompo-
sition, the variance of the output may be cast as a
covariance decomposition as originally shown in Li
et al. (2010). The approach proposed in this paper thus
consists in:

• building a functional approximation of M in
terms of a polynomial chaos decomposition as
if the input vector X had independent compo-
nents;

• using this functional approximation in order to
evaluate the variance of the output under the real
input distribution that includes some dependence
between the parameters.

4.2 Covariance decomposition

Assume that the PC expansion of the computational
model Eq.(4) has been constructed under the hypoth-
esis of independent input random variables. Consider
now the true input random vectorX . The variance of
the model response reads:

Var [M(X)]

= Cov

M0 +
∑

u⊂{1, ... ,M}

Mu(Xu) ,M(X)


=

∑
u⊂{1, ... ,M}

Cov [Mu(Xu),,M(X)]

(17)

where each term can in turn be decomposed as follow:

Cov [Mu(Xu),,M(X)] = Var [Mu(Xu)]

+
∑
v 6=u

Cov [Mu(Xu);Mv(Xv)]
(18)

By renormalizing the above equation we introduce the
covariance-based total sensitivity index:

S(cov)
u =

Cov [Mu(Xu) ,M(X)]

Var [M(X)]
(19)

This covariance index is the sum of a structural (or
uncorrelated) sensitivity index S(U)

u and a correlative
sensitivity index S(C)

u which are defined by:

S(U)
u =

Var [Mu(Xu)]

Var [M(X)]

S(C)
u = S(cov)

u − S(S)
u

(20)

In the case of independent input variables, if the func-
tional approximation is a truncated polynomial chaos
expansion then the correlative indices vanish due to
Eq.(8) and the structural indices reduce to the classi-
cal Sobol’ indices. The above definition is thus con-
sistent with the classical approach.

4.3 Estimation of the covariance-based indices

Once the functional approximation is available from
the PC expansion (see Eqs.(13)-(14)), Monte Carlo
estimates of variances and covariances in Eqs.(19)-
(20) are easily obtained. Denoting by XMCS =
{x1, . . . ,xn} a sample set drawn from the original
distribution of the input vector Eq.(16), the empirical
mean value and variance of the response reads:

yA =
1

n

n∑
i=1

MA(xi)

V̂ar [YA] =
1

n− 1

n∑
i=1

(MA(xi)− yA)2

(21)

Note that yA 6= y0 since the expectations of each ba-
sis polynomial E [Ψα] under the actual distribution
fX are non zero. For any subset u ∈ {1, . . . ,M}, the
subvector of a sample xi ∈ XMCS made of the com-
ponents that are labelled by u is simply denoted by
xu,i. As in Eq.(21) the expected value E [Mu(xu)] is
estimated by:

yu
def
= Ê [Mu(xu)] =

1

n

n∑
i=1

Mu(xu,i) (22)



The estimate of the covariance-based sensitivity index
then reads:

Ŝ
(cov)
u =

∑n
i=1 (MA(xi)− yA) (Mu(xu,i)− yu)∑n

i=1 (MA(xi)− yA)2

(23)

Similarly the uncorrelated contribution is estimated
by:

Ŝ
(U)
u =

∑n
i=1 (Mu(xu,i)− yu)2∑n
i=1 (MA(xi)− yA)2

(24)

5 APPLICATION EXAMPLE: TOLERANCE
ANALYSIS

5.1 Introduction

In industrial mass production, assembled products are
made of individual parts that are prone to uncertainty
in their dimensions due to the manufacturing pro-
cesses. Non-assembly problems may occur when the
real dimensions of some parts differ (even slightly)
from their nominal values, even if they remain in
the prescribed tolerance ranges. The customer qual-
ity requirements are usually defined in terms of num-
ber of out-of-tolerance assemblies (e.g. expressed in
ppm, i.e. parts per million). Predicting this proba-
bility of non-assembly prior to the mass production
is of crucial importance since it may avoid a large
wastage during production. Probabilistic methods de-
rived from structural reliability analysis have been
recently proposed by Gayton, Beaucaire, Bourinet,
Duc, Lemaire, & Gauvrit (2011) in order to address
such problems.

Within the tolerance analysis it is also impor-
tant to detect the key dimensions, i.e. those dimen-
sions whose uncertainty may affect the most the
non-assembly. This question can be solved using
global sensitivity analysis. The functional require-
ment which is typically a function of the various di-
mensions of the parts in the assembly is considered as
the output Y =M(X) where X is a random vector
whose components model the tolerance range of the
parts respective dimensions. The key dimensions cor-
respond to those dimensions which exhibit the largest
sensitivity indices.

When complex parts are manufactured it is com-
mon that several surfaces are machined during the
same operation. The corresponding dimensions (e.g.
hole or axle diameters) are then strongly correlated:
if one dimension is smaller than its nominal value
(e.g. due to the wear of the tool) the others will most
probably also be. Thus the covariance-based sensitiv-
ity indices are relevant in this situation. In the sequel
we present an application example taken from Caniou
(2012).

5.2 Problem statement

The assembly under consideration corresponds to an
electrical connector for which a contact clearance is
of interest. More specifically the axial deviation of the
connector pin is considered which shall not be greater
than a given threshold for the sake of correct assembly
(see Figure 1).

Figure 1: Electric connector – after Gayton et al. (2011)

This deviation is computed as a non linear func-
tion of the dimensions of the various components and
parameters describing their respective positions (see
Gayton et al. (2011) for details):

c =
cm4 + cm8 + cm7

2
(25)

i =
ima17 + ima19 + ima20

2
(26)

h = ima2 + ima3 (27)

α = arccos
(

c√
i2 + h2

)
− arccos

(
i√

i2 + h2

)
(28)

r2 =

ima19 + ima20/2

2
− cm8 + cm7/2

2 cos(α)

tan(α)
(29)

z =
r2

cos(α)
+

(
cm9 + cm10/2

2
+
cm7

4

)
tan(α)

(30)



J1 = (cm1 − cm3 − z) sin(α) (31)

J2 =
cm7

4
cos(α) (32)

J3 =
cm5 + cm6

2
cos(α) (33)

Y = J1 + J2 + J3 (34)

The 14 parameters appearing in the above equa-
tions are considered as Gaussian random variables,
whose parameters are reported in Table 1.

Parameter Mean µ σ
cm1 10.530 0.200/6
cm3 0.750 0.040/6
cm4 0.643 0.015/6
cm5 0.100 0.200/6
cm6 0.000 0.060/6
cm7 0.000 0.200/6
cm8 0.720 0.040/6
cm9 1.325 0.050/6
cm10 0.000 0.040/6
ima2 3.020 0.060/6
ima3 0.400 0.060/6
ima17 0.720 0.040/6
ima19 0.970 0.040/6
ima20 0.000 0.040/6

Table 1: Electric connector – probabilistic modelling of the di-
mensions and their tolerances (Gaussian distributions, all dimen-
sions in mm).

Because different surfaces are machined during the
same manufacturing operation, their dimension are
highly correlated. The different Spearman correlation
coefficients ρS are estimated as follows:

ρS(cm1, cm3) = 0.8

ρS(cm4, cm8) = ρS(cm4, cm9)

= ρS(cm8, cm9) = 0.8

ρS(ima17, ima19) = ρS(ima17, ima20)

= ρS(ima19, ima20) = 0.8

(35)

The joint distribution of this parameters is built as
in Eq.(16) from the marginal Gaussian distributions
and a Gaussian copula (see Nelsen (1999) for details)
which is is parameterized by a correlation matrix R
derived from Eq.(35):

Rij = 2 sin
(π

6
ρS,ij

)
(36)

A covariance-based sensitivity analysis is carried
out using polynomial chaos expansion of degree p =

2. Due to the dimension of the problem, i.e. M = 14,
the number of coefficients to be computed by mean
square regression is high, i.e. P = 120. The exper-
imental design a Latin Hypercube sample of size
N = 2P = 240. The various covariance terms are
computed using n = 104 in the Monte Carlo simu-
lations.

Parameter S
(cov)
i SUi SCi

cm1 0.00 0.00 0.00
cm3 0.00 0.00 0.00
cm4 0.02 0.01 0.01
cm5 0.15 0.15 0.00
cm6 0.02 0.02 0.00
cm7 0.52 0.51 0.01
cm8 0.03 0.02 0.01
cm9 0.00 0.00 0.00
cm10 0.00 0.00 0.00
ima2 0.00 0.00 0.00
ima3 0.00 0.00 0.00
ima17 0.11 0.05 0.06
ima19 0.07 0.02 0.05
ima20 0.09 0.03 0.06

Σ 1.00 0.81 0.19
Table 2: Results of the sensitivity analysis for the electrical con-
nectors.

The first order sensitivity indices Si, i = 1, . . . ,M
attached to each input variable are reported in Table 2.
It appears that the main contributor to the variability
of Y are the dimension cm7 and cm5. These param-
eters are not correlated to others such that S(cov)

cmk ≈
SUcmk

, k = 5,7.
In contrast the three dimensions imak, k =

17,19,20, which contribute to 27% of the output vari-
ance are correlated. It is clear from the table that their
correlative sensitivity indices SCi are greater than the
uncorrelated counterpart, which can be explained by
the large correlation coefficients between these pa-
rameters in Eq.(35).

6 CONCLUSIONS

Taking into account the statistical dependence be-
tween model input parameters in global sensitivity
analysis is an important problem that has not been
given a definitive solution so far. In the context of
complex models such as those appearing in mechan-
ical engineering the limited number of runs of the
computational model that is affordable precludes the
use of simulation-based estimators.

In this paper we use the so-called covariance de-
composition in order to define sensitiviy indices that
have both a structural (also called uncorrelated) and a



correlative contribution. These indices are computed
by first carrying out a polynomial chaos expansion of
the computational model under the assumption of in-
dependent input parameters. The expansion is then
split into functional summands of increasing order,
which in turn are used to compute the required co-
variances by Monte Carlo simulation.

An application example that is taken from tolerance
analysis in mechanical engineering is used in order
to illustrate the approach and shows that some impor-
tant parameters (i.e. notably contributing to the output
variance) have significant correlative contributions.
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